Search results

1 – 2 of 2
Open Access
Article
Publication date: 27 April 2022

Elina Ilén, Farid Elsehrawy, Elina Palovuori and Janne Halme

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is…

2710

Abstract

Purpose

Solar cells could make textile-based wearable systems energy independent without the need for battery replacement or recharging; however, their laundry resistance, which is prerequisite for the product acceptance of e-textiles, has been rarely examined. This paper aims to report a systematic study of the laundry durability of solar cells embedded in textiles.

Design/methodology/approach

This research included small commercial monocrystalline silicon solar cells which were encapsulated with functional synthetic textile materials using an industrially relevant textile lamination process and found them to reliably endure laundry washing (ISO 6330:2012). The energy harvesting capability of eight textile laminated solar cells was measured after 10–50 cycles of laundry at 40 °C and compared with light transmittance spectroscopy and visual inspection.

Findings

Five of the eight textile solar cell samples fully maintained their efficiency over the 50 laundry cycles, whereas the other three showed a 20%–27% decrease. The cells did not cause any visual damage to the fabric. The result indicates that the textile encapsulated solar cell module provides sufficient protection for the solar cells against water, washing agents and mechanical stress to endure repetitive domestic laundry.

Research limitations/implications

This study used rigid monocrystalline silicon solar cells. Flexible amorphous silicon cells were excluded because of low durability in preliminary tests. Other types of solar cells were not tested.

Originality/value

A review of literature reveals the tendency of researchers to avoid standardized textile washing resistance testing. This study removes the most critical obstacle of textile integrated solar energy harvesting, the washing resistance.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 29 May 2019

Marjo Määttänen, Sari Asikainen, Taina Kamppuri, Elina Ilen, Kirsi Niinimäki, Marjaana Tanttu and Ali Harlin

While aiming to create methods for fibre recycling, the question of colours in waste textiles is also in focus; whether the colour should be kept or should be removed while…

5478

Abstract

Purpose

While aiming to create methods for fibre recycling, the question of colours in waste textiles is also in focus; whether the colour should be kept or should be removed while recycling textile fibre. More knowledge is needed for colour management in a circular economy approach.

Design/methodology/approach

The research included the use of different dye types in a cotton dyeing process, the process for decolourizing and the results. Two reactive dyes, two direct dyes and one vat dye were used in the study. Four chemical treatment sequences were used to evaluate colour removal from the dyed cotton fabrics, namely, HCE-A, HCE-P-A, HCE-Z-P-A and HCE-Y-A.

Findings

The objective was to evaluate how different chemical refining sequences remove colour from direct, reactive and vat dyed cotton fabrics, and how they influence the specific cellulose properties. Dyeing methods and the used refining sequences influence the degree of colour removal. The highest achieved final brightness of refined cotton materials were between 71 and 91 per cent ISO brightness, depending on the dyeing method used.

Research limitations/implications

Only cotton fibre and three different colour types were tested.

Practical implications

With cotton waste, it appears to be easier to remove the colour than to retain it, especially if the textile contains polyester residues, which are desired to be removed in the textile refining stage.

Originality/value

Colour management in the CE context is an important new track to study in the context of the increasing amount of textile waste used as a raw material.

Details

Research Journal of Textile and Apparel, vol. 23 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 2 of 2